{ "id": "1608.07908", "version": "v1", "published": "2016-08-29T04:02:55.000Z", "updated": "2016-08-29T04:02:55.000Z", "title": "A family of new simple modules over the Schrödinger-Virasoro algebra", "authors": [ "Haibo Chen", "Yanyong Hong", "Yucai Su" ], "categories": [ "math.RT" ], "abstract": "In this article, a large class of simple modules over the Schr\\\"odinger-Virasoro algebra $\\mathcal{G}$ are constructed, which include highest weight modules and Whittaker modules. These modules are determined by the simple modules over the finite-dimensional quotient algebras of some subalgebras. Moreover, we show that all simple modules of $\\mathcal{G}$ with locally finite actions of elements in a certain positive part belong to this class of simple modules. Similarly, a large class of simple modules over the $W$-algebra $W(2,2)$ are constructed.", "revisions": [ { "version": "v1", "updated": "2016-08-29T04:02:55.000Z" } ], "analyses": { "keywords": [ "simple modules", "schrödinger-virasoro algebra", "large class", "highest weight modules", "finite-dimensional quotient algebras" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }