{ "id": "1608.07645", "version": "v1", "published": "2016-08-27T01:59:51.000Z", "updated": "2016-08-27T01:59:51.000Z", "title": "An abelian quotient of the symplectic derivation Lie algebra of the free Lie algebra", "authors": [ "Shigeyuki Morita", "Takuya Sakasai", "Masaaki Suzuki" ], "comment": "20 pages", "categories": [ "math.AT", "math.GT", "math.QA" ], "abstract": "We construct an abelian quotient of the symplectic derivation Lie algebra $\\mathfrak{h}_{g,1}$ of the free Lie algebra generated by the fundamental representation of $\\mathrm{Sp}(2g,\\mathbb{Q})$. More specifically, we show that the weight $12$ part of the abelianization of $\\mathfrak{h}_{g,1}$ is $1$-dimensional for $g \\ge 8$. The computation is done with the aid of computers.", "revisions": [ { "version": "v1", "updated": "2016-08-27T01:59:51.000Z" } ], "analyses": { "subjects": [ "20F28", "20J06", "17B40" ], "keywords": [ "symplectic derivation lie algebra", "free lie algebra", "abelian quotient", "fundamental representation", "abelianization" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }