{ "id": "1608.07247", "version": "v1", "published": "2016-08-25T18:45:56.000Z", "updated": "2016-08-25T18:45:56.000Z", "title": "Minimal number of points on a grid forming patterns of blocks", "authors": [ "Chai Wah Wu" ], "comment": "8 pages, 4 figures", "categories": [ "math.CO" ], "abstract": "We consider the minimal number of points on a regular grid on the plane that generates n blocks of points of exactly length k and show that this number is upper bounded by kn/3 and approaches kn/4 as $n\\rightarrow\\infty$ when k+1 is coprime with 6 or when k is large.", "revisions": [ { "version": "v1", "updated": "2016-08-25T18:45:56.000Z" } ], "analyses": { "subjects": [ "05Bxx" ], "keywords": [ "grid forming patterns", "minimal number", "regular grid", "approaches", "exactly length" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }