{ "id": "1608.06705", "version": "v1", "published": "2016-08-24T04:13:13.000Z", "updated": "2016-08-24T04:13:13.000Z", "title": "On Hasse-Ramachandra's problem", "authors": [ "Ja Kyung Koo", "Dong Hwa Shin", "Dong Sung Yoon" ], "comment": "15 pages", "categories": [ "math.NT" ], "abstract": "Let $K$ be an imaginary quadratic field, and let $N$ be an integer greater than $1$. We show that a special value of the Weber function alone generates the ray class field modulo $N$ over the base field $K$, except for the eight cases $N=2,\\,3,\\,4,\\,6,\\,12,\\,18,\\,24,\\,36$. This would be a partial answer to the question raised by Hasse and Ramachandra.", "revisions": [ { "version": "v1", "updated": "2016-08-24T04:13:13.000Z" } ], "analyses": { "subjects": [ "11R37", "11G15", "11G16" ], "keywords": [ "hasse-ramachandras problem", "ray class field modulo", "imaginary quadratic field", "weber function", "integer greater" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }