{ "id": "1608.06101", "version": "v1", "published": "2016-08-22T09:51:37.000Z", "updated": "2016-08-22T09:51:37.000Z", "title": "Convexity and Star-shapedness of Real Linear Images of Special Orthogonal Orbits", "authors": [ "Pan-Shun Lau", "Tuen-Wai Ng", "Nam-Kiu Tsing" ], "categories": [ "math.FA" ], "abstract": "Let $A\\in \\mathbb{R}^{N\\times N}$ and $\\mathrm{SO}_n:=\\{ U \\in \\mathbb{R}^{N \\times N}:UU^t=I_n,\\det U>0\\}$ be the set of $n\\times n$ special orthogonal matrices. Define the (real) special orthogonal orbit of $A$ by \\[ O(A):=\\{UAV:U,V\\in\\mathrm{SO}_n\\}. \\] In this paper, we show that the linear image of $O(A)$ is star-shaped with respect to the origin for arbitrary linear maps $L:\\mathbb{R}^{N\\times N}\\to\\mathbb{R}^\\ell$ if $n\\geq 2^{\\ell-1}$. In particular, for linear maps $L:\\mathbb{R}^{N\\times N}\\to\\mathbb{R}^2$ and when $A$ has distinct singular values, we study $B\\in O(A)$ such that $L(B)$ is a boundary point of $L(O(A))$. This gives an alternative proof of a result by Li and Tam on the convexity of $L(O(A))$ for linear maps $L:\\mathbb{R}^{N\\times N}\\to\\mathbb{R}^2$.", "revisions": [ { "version": "v1", "updated": "2016-08-22T09:51:37.000Z" } ], "analyses": { "subjects": [ "15A04", "15A18" ], "keywords": [ "special orthogonal orbit", "real linear images", "star-shapedness", "arbitrary linear maps", "special orthogonal matrices" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }