{ "id": "1608.06086", "version": "v1", "published": "2016-08-22T08:45:54.000Z", "updated": "2016-08-22T08:45:54.000Z", "title": "Power of Two as sums of Three Pell Numbers", "authors": [ "Jhon J. Bravo", "Bernadette Faye", "Florian Luca" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we find all the solutions of the Diophantine equation $P_\\ell + P_m +P_n=2^a$, in nonnegative integer variables $(n,m,\\ell, a)$ where $P_k$ is the $k$-th term of the Pell sequence $\\{P_n\\}_{n\\ge 0}$ given by $P_0=0$, $P_1=1$ and $P_{n+1}=2P_{n}+ P_{n-1}$ for all $n\\geq 1$.", "revisions": [ { "version": "v1", "updated": "2016-08-22T08:45:54.000Z" } ], "analyses": { "subjects": [ "11D45", "11B39", "11A25" ], "keywords": [ "pell numbers", "diophantine equation", "nonnegative integer variables", "th term" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }