{ "id": "1608.05726", "version": "v1", "published": "2016-08-19T20:12:50.000Z", "updated": "2016-08-19T20:12:50.000Z", "title": "PFA and guessing models", "authors": [ "Nam Trang" ], "categories": [ "math.LO" ], "abstract": "This paper explores the consistency strength of The Proper Forcing Axiom ($\\textsf{PFA}$) and the theory (T) which involves a variation of the Viale-Wei$\\ss$ guessing hull principle. We show that (T) is consistent relative to a supercompact cardinal. The main result of the paper implies that the theory \"$\\sf{AD}$$_\\mathbb{R} + \\Theta$ is regular\" is consistent relative to (T) and to $\\textsf{PFA}$. This improves significantly the previous known best lower-bound for consistency strength for (T) and $\\textsf{PFA}$, which is roughly \"$\\sf{AD}$$_\\mathbb{R} + \\textsf{DC}$\".", "revisions": [ { "version": "v1", "updated": "2016-08-19T20:12:50.000Z" } ], "analyses": { "subjects": [ "03E45", "03E55", "03E47" ], "keywords": [ "guessing models", "consistency strength", "paper implies", "main result", "proper forcing axiom" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }