{ "id": "1608.05697", "version": "v1", "published": "2016-08-19T19:02:12.000Z", "updated": "2016-08-19T19:02:12.000Z", "title": "The number of $\\mathbb{F}_p$-points on Dwork hypersurfaces and hypergeometric functions", "authors": [ "Dermot McCarthy" ], "categories": [ "math.NT" ], "abstract": "We provide a formula for the number of $\\mathbb{F}_{p}$-points on the Dwork hypersurface $$x_1^n + x_2^n \\dots + x_n^n - n \\lambda \\, x_1 x_2 \\dots x_n=0$$ in terms of a $p$-adic hypergeometric function previously defined by the author. This formula holds in the general case, i.e for any $n, \\lambda \\in \\mathbb{F}_p^{*}$ and for all odd primes $p$, thus extending results of Goodson and Barman et al which hold in certain special cases.", "revisions": [ { "version": "v1", "updated": "2016-08-19T19:02:12.000Z" } ], "analyses": { "keywords": [ "dwork hypersurface", "adic hypergeometric function", "special cases", "odd primes", "general case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }