{ "id": "1608.04913", "version": "v1", "published": "2016-08-17T10:02:45.000Z", "updated": "2016-08-17T10:02:45.000Z", "title": "When an Equivalence Relation with All Borel Classes will be Borel Somewhere?", "authors": [ "William Chan", "Menachem Magidor" ], "categories": [ "math.LO" ], "abstract": "In $\\mathsf{ZFC}$, if there is a measurable cardinal with infinitely many Woodin cardinals below it, then for every equivalence relation $E \\in L(\\mathbb{R})$ on $\\mathbb{R}$ with all $\\mathbf{\\Delta}_1^1$ classes and every $\\sigma$-ideal $I$ on $\\mathbb{R}$ so that the associated forcing $\\mathbb{P}_I$ of $I^+$ $\\mathbf{\\Delta}_1^1$ subsets is proper, there exists some $I^+$ $\\mathbf{\\Delta}_1^1$ set $C$ so that $E \\upharpoonright C$ is a $\\mathbf{\\Delta}_1^1$ equivalence relation. In $\\mathsf{ZF} + \\mathsf{DC} + \\mathsf{AD}_\\mathbb{R} + V = L(\\mathscr{P}(\\mathbb{R}))$, for every equivalence relation $E$ on $\\mathbb{R}$ with all $\\mathbf{\\Delta}_1^1$ classes and every $\\sigma$-ideal $I$ on $\\mathbb{R}$ so that the associated forcing $\\mathbb{P}_I$ is proper, there is some $I^+$ $\\mathbf{\\Delta}_1^1$ set $C$ so that $E \\upharpoonright C$ is a $\\mathbf{\\Delta}_1^1$ equivalence relation.", "revisions": [ { "version": "v1", "updated": "2016-08-17T10:02:45.000Z" } ], "analyses": { "keywords": [ "equivalence relation", "borel classes", "woodin cardinals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }