{ "id": "1608.04675", "version": "v1", "published": "2016-08-16T17:12:49.000Z", "updated": "2016-08-16T17:12:49.000Z", "title": "A Stability Theorem for Maximal $K_{r+1}$-free Graphs", "authors": [ "Kamil Popielarz", "Julian Sahasrabudhe", "Richard Snyder" ], "comment": "17 pages", "categories": [ "math.CO" ], "abstract": "For $r \\geq 2$, we show that every maximal $K_{r+1}$-free graph $G$ on $n$ vertices with $(1-\\frac{1}{r})\\frac{n^2}{2}-o(n^{\\frac{r+1}{r}})$ edges contains a complete $r$-partite subgraph on $(1 - o(1))n$ vertices. We also show that this is best possible. This result answers a question of Tyomkyn and Uzzell.", "revisions": [ { "version": "v1", "updated": "2016-08-16T17:12:49.000Z" } ], "analyses": { "subjects": [ "05C35" ], "keywords": [ "free graph", "stability theorem", "edges contains", "partite subgraph", "result answers" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }