{ "id": "1608.04344", "version": "v1", "published": "2016-08-15T17:51:22.000Z", "updated": "2016-08-15T17:51:22.000Z", "title": "A Dynamic Uncertainty Principle for Jacobi Operators", "authors": [ "Isaac Alvarez-Romero", "Gerald Teschl" ], "comment": "8 pages", "categories": [ "math-ph", "math.AP", "math.MP" ], "abstract": "We prove that a solution of the Schr\\\"odinger-type equation $\\mathrm{i}\\partial_t u= Hu$, where $H$ is a Jacobi operator with asymptotically constant coefficients, cannot decay too fast at two different times unless it is trivial.", "revisions": [ { "version": "v1", "updated": "2016-08-15T17:51:22.000Z" } ], "analyses": { "subjects": [ "33C45", "47B36", "81U99", "81Q05" ], "keywords": [ "dynamic uncertainty principle", "jacobi operator", "asymptotically constant coefficients" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }