{ "id": "1608.04196", "version": "v1", "published": "2016-08-15T07:23:08.000Z", "updated": "2016-08-15T07:23:08.000Z", "title": "On the gaps between non-zero Fourier coefficients of eigenforms with CM", "authors": [ "Surjeet Kaushik", "Narasimha Kumar" ], "categories": [ "math.NT" ], "abstract": "Suppose $E$ is an elliptic curve over $\\mathbb{Q}$ of conductor $N$ with complex multiplication (CM) by $\\mathbb{Q}(i)$, and $f_E$ is the corresponding cuspidal Hecke eigenform in $S^{\\mathrm{new}}_2(\\Gamma_0(N))$. Then $n$-th Fourier coefficient of $f_E$ is non-zero in the short interval $(X, X + cX^{\\frac{1}{4}})$ for all $X \\gg 0$ and for some $c > 0$. As a consequence, we produce infinitely many cuspidal CM eigenforms $f$ level $N>1$ and weight $k > 2$ for which $i_f(n) \\ll n^{\\frac{1}{4}}$ holds, for all $n \\gg 0$.", "revisions": [ { "version": "v1", "updated": "2016-08-15T07:23:08.000Z" } ], "analyses": { "subjects": [ "11F30", "11F11", "11F33", "11G05" ], "keywords": [ "non-zero fourier coefficients", "th fourier coefficient", "cuspidal cm eigenforms", "corresponding cuspidal hecke eigenform", "elliptic curve" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }