{ "id": "1608.03666", "version": "v1", "published": "2016-08-12T03:40:49.000Z", "updated": "2016-08-12T03:40:49.000Z", "title": "Power type $ΞΎ$-asymptotically uniformly smooth norms", "authors": [ "Ryan M Causey" ], "categories": [ "math.FA" ], "abstract": "We extend a precise renorming result of Godefroy, Kalton, and Lancien regarding asymptotically uniformly smooth norms of separable Banach spaces with Szlenk index $\\omega$. For every ordinal $\\xi$, we characterize the operators, and therefore the Banach spaces, which admit a $\\xi$-asymptotically uniformly smooth norm with power type modulus and compute for those operators the best possible exponent in terms of the values of $Sz_\\xi(\\cdot, \\varepsilon)$. We also introduce the $\\xi$-Szlenk power type and investigate ideal and factorization properties of classes associated with the $\\xi$-Szlenk power type.", "revisions": [ { "version": "v1", "updated": "2016-08-12T03:40:49.000Z" } ], "analyses": { "keywords": [ "szlenk power type", "power type modulus", "regarding asymptotically uniformly smooth norms", "szlenk index", "separable banach spaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }