{ "id": "1608.03189", "version": "v1", "published": "2016-08-10T14:38:35.000Z", "updated": "2016-08-10T14:38:35.000Z", "title": "A generalisation of Sylvester's problem to higher dimensions", "authors": [ "Simeon Ball", "Joaquim Monserrat" ], "categories": [ "math.MG" ], "abstract": "In this article we consider $S$ to be a set of points in $d$-space with the property that any $d$ points of $S$ span a hyperplane and not all the points of $S$ are contained in a hyperplane. The aim of this article is to introduce the function $e_d(n)$, which denotes the minimal number of hyperplanes meeting $S$ in precisely $d$ points, minimising over all such sets of points $S$ with $|S|=n$.", "revisions": [ { "version": "v1", "updated": "2016-08-10T14:38:35.000Z" } ], "analyses": { "subjects": [ "51M04", "52C35" ], "keywords": [ "higher dimensions", "sylvesters problem", "generalisation", "hyperplane" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }