{ "id": "1608.03112", "version": "v1", "published": "2016-08-10T10:07:48.000Z", "updated": "2016-08-10T10:07:48.000Z", "title": "Iwasawa theory of Rubin-Stark units and class group", "authors": [ "Youness Mazigh" ], "categories": [ "math.NT" ], "abstract": "Let $K$ be a totally real number field of degree $r=[K:\\mathbb{Q}]$ and let $p$ be an odd rational prime. Let $K_{\\infty}$ denote the cyclotomic $\\mathbb{Z}_{p}$-extension of $K$ and let $L_{\\infty}$ be a finite extension of $K_{\\infty}$, abelian over $K$. In this article, we extend results of \\cite{Kazim109} relating characteristic ideal of the $\\chi$-quotient of the projective limit of the ideal class groups to the $\\chi$-quotient of the projective limit of the $r$-th exterior power of units modulo Rubin-Stark units, in the non semi-simple case, for some $\\overline{\\mathbb{Q}_{p}}$-irreductible characters $\\chi$ of $\\mathrm{Gal}(L_{\\infty}/K_{\\infty})$.", "revisions": [ { "version": "v1", "updated": "2016-08-10T10:07:48.000Z" } ], "analyses": { "subjects": [ "11R23", "11R27", "11R29", "11R42" ], "keywords": [ "iwasawa theory", "units modulo rubin-stark units", "totally real number field", "projective limit", "ideal class groups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }