{ "id": "1608.03043", "version": "v1", "published": "2016-08-10T04:39:34.000Z", "updated": "2016-08-10T04:39:34.000Z", "title": "Oscillation Revisited", "authors": [ "Gerald Beer", "Jiling Cao" ], "comment": "13 pages", "categories": [ "math.GN" ], "abstract": "In previous work by Beer and Levi [8, 9], the authors studied the oscillation $\\Omega (f,A)$ of a function $f$ between metric spaces $\\langle X,d \\rangle$ and $\\langle Y,\\rho \\rangle$ at a nonempty subset $A$ of $X$, defined so that when $A =\\{x\\}$, we get $\\Omega (f,\\{x\\}) = \\omega (f,x)$, where $\\omega (f,x)$ denotes the classical notion of oscillation of $f$ at the point $x \\in X$. The main purpose of this article is to formulate a general joint continuity result for $(f,A) \\mapsto \\Omega (f,A)$ valid for continuous functions.", "revisions": [ { "version": "v1", "updated": "2016-08-10T04:39:34.000Z" } ], "analyses": { "subjects": [ "54E40", "54B20", "26A15", "54E35", "54C35" ], "keywords": [ "oscillation", "general joint continuity result", "main purpose", "metric spaces", "nonempty subset" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }