{ "id": "1608.03014", "version": "v1", "published": "2016-08-10T00:45:38.000Z", "updated": "2016-08-10T00:45:38.000Z", "title": "Some sums over irreducible polynomials", "authors": [ "David E Speyer" ], "categories": [ "math.NT", "math.CO" ], "abstract": "We prove a number of conjectures due to Dinesh Thakur concerning sums of the form $\\sum_P h(P)$ where the sum is over monic irreducible polynomials $P$ in $\\mathbb{F}_q[T]$, the function $h$ is a rational function and the sum is considered in the $T^{-1}$-adic topology. As an example of our results, in $\\mathbb{F}_2[T]$, the sum $\\sum_P \\tfrac{1}{P^k - 1}$ always converges to a rational function, and is $0$ for $k=1$.", "revisions": [ { "version": "v1", "updated": "2016-08-10T00:45:38.000Z" } ], "analyses": { "keywords": [ "rational function", "dinesh thakur concerning sums", "monic irreducible polynomials", "adic topology", "conjectures" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }