{ "id": "1608.02815", "version": "v1", "published": "2016-08-09T14:28:26.000Z", "updated": "2016-08-09T14:28:26.000Z", "title": "Nagata's compactification theorem for normal toric varieties over a valuation ring of rank one", "authors": [ "Alejandro Soto" ], "comment": "1 figure, 14 pages. Comments welcome", "categories": [ "math.AG" ], "abstract": "We prove, using invariant Zariski-Riemann spaces, that every normal toric variety over a valuation ring of rank one can be embedded as an open dense subset into a proper normal toric variety equivariantly. This extends a well known theorem of Sumihiro for toric varieties over a field to this more general setting.", "revisions": [ { "version": "v1", "updated": "2016-08-09T14:28:26.000Z" } ], "analyses": { "keywords": [ "nagatas compactification theorem", "valuation ring", "proper normal toric variety", "invariant zariski-riemann spaces", "open dense subset" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }