{ "id": "1608.02188", "version": "v1", "published": "2016-08-07T06:47:05.000Z", "updated": "2016-08-07T06:47:05.000Z", "title": "Convergence of the Finite Difference Scheme for a General Class of Multi-phase Obstacle-like problems", "authors": [ "Avetik Arakelyan" ], "comment": "13 pages", "categories": [ "math.NA" ], "abstract": "In this work we prove convergence of the finite difference scheme for equations of stationary states of a general class of the spatial segregation of reaction-diffusion systems with $m\\geq 2$ components. More precisely, we show that the numerical solution $u_h^l$, given by the difference scheme, converges to the $l^{th}$ component $u_l,$ when the mesh size $h$ tends to zero, provided $u_l\\in C^2(\\Omega),$ for every $l=1,2,\\dots,m.$ In particular, our proof provides convergence of a difference scheme for the multi-phase obstacle problem.", "revisions": [ { "version": "v1", "updated": "2016-08-07T06:47:05.000Z" } ], "analyses": { "subjects": [ "35R35", "65N06", "65N22", "92D25" ], "keywords": [ "finite difference scheme", "multi-phase obstacle-like problems", "general class", "convergence", "multi-phase obstacle problem" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }