{ "id": "1608.02107", "version": "v1", "published": "2016-08-06T13:21:54.000Z", "updated": "2016-08-06T13:21:54.000Z", "title": "A new bound for Vizing's conjecture", "authors": [ "Elliot Krop" ], "comment": "7 pages", "categories": [ "math.CO" ], "abstract": "For any graph $G$, we define the power $\\pi(G)$ as the minimum of the largest number of neighbors in a $\\gamma$-set of $G$, of any vertex, taken over all $\\gamma$-sets of $G$. We show that $\\gamma(G\\square H)\\geq \\frac{\\pi(G)}{2\\pi(G) -1}\\gamma(G)\\gamma(H)$. This implies that for any graphs $G$ and $H$, $\\gamma(G\\square H)\\geq \\frac{\\gamma(G)}{2\\gamma(G)-1}\\gamma(G)\\gamma(H)$, and if $G$ is claw-free or $P_4$-free, $\\gamma(G\\square H)\\geq \\frac{2}{3}\\gamma(G)\\gamma(H)$, where $\\gamma(G)$ is the domination number of $G$.", "revisions": [ { "version": "v1", "updated": "2016-08-06T13:21:54.000Z" } ], "analyses": { "keywords": [ "vizings conjecture", "domination number", "largest number" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }