{ "id": "1608.02022", "version": "v1", "published": "2016-08-08T15:32:59.000Z", "updated": "2016-08-08T15:32:59.000Z", "title": "Sums of four polygonal numbers with coefficients", "authors": [ "Xiang-Zi Meng", "Zhi-Wei Sun" ], "comment": "22 pages", "categories": [ "math.NT" ], "abstract": "Let $m\\ge3$ be a positive integer. The polygonal numbers of order $m+2$ are given by $p_{m+2}(n)=m\\binom n2+n$ $(n=0,1,2,\\ldots)$. For $(a,b)=(1,1),(2,2),(1,3),(2,4)$, we study whether any sufficiently large integer can be expressed as $$p_{m+2}(x_1) + p_{m+2}(x_2) + ap_{m+2}(x_3) + bp_{m+2}(x_4)$$ with $x_1,x_2,x_3,x_4$ nonnegative integers. We show that the answer is positive if $(a,b)\\in\\{(1,3),(2,4)\\}$, or $(a,b)=(1,1)\\ \\&\\ 4\\mid m$, or $(a,b)=(2,2)\\ \\&\\ m\\not\\equiv 2\\pmod 4$. In particular, we confirm a conjecture of Z.-W. Sun which states that any natural number can be written as $p_6(x_1) + p_6(x_2) + 2p_6(x_3) + 4p_6(x_4)$ with $x_1,x_2,x_3,x_4$ nonnegative integers.", "revisions": [ { "version": "v1", "updated": "2016-08-08T15:32:59.000Z" } ], "analyses": { "subjects": [ "11E20", "11E25", "11B13", "11B75", "11D85", "11P99" ], "keywords": [ "polygonal numbers", "coefficients", "nonnegative integers", "natural number", "sufficiently large integer" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }