{ "id": "1608.02020", "version": "v1", "published": "2016-08-05T20:54:35.000Z", "updated": "2016-08-05T20:54:35.000Z", "title": "Global well-posedness and scattering for the radial, defocusing, cubic wave equation with initial data in a critical Besov space", "authors": [ "Benjamin Dodson" ], "comment": "28 pages", "categories": [ "math.AP" ], "abstract": "In this paper we prove that the cubic wave equation is globally well - posed and scattering for radial initial data lying in $B_{1,1}^{2} \\times B_{1,1}^{1}$. This space of functions is a scale invariant subspace of $\\dot{H}^{1/2} \\times \\dot{H}^{-1/2}$.", "revisions": [ { "version": "v1", "updated": "2016-08-05T20:54:35.000Z" } ], "analyses": { "keywords": [ "cubic wave equation", "critical besov space", "global well-posedness", "scattering", "scale invariant subspace" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }