{ "id": "1608.01934", "version": "v1", "published": "2016-08-05T16:54:07.000Z", "updated": "2016-08-05T16:54:07.000Z", "title": "Prospecies of algebras I: Basic properties", "authors": [ "Julian Külshammer" ], "categories": [ "math.RT" ], "abstract": "In this paper, we generalise part of the theory of hereditary algebras to the context of prospecies of algebras. Here, a prospecies is a generalisation of Gabriel's concept of species gluing algebras via projective bimodules along a quiver to obtain a new algebra. This provides a categorical perspective on a recent paper by Gei\\ss, Leclerc, and Schr\\\"oer. In particular, we construct a corresponding preprojective algebra, and establish a theory of a separated prospecies yielding a stable equivalence between certain functorially finite subcategories.", "revisions": [ { "version": "v1", "updated": "2016-08-05T16:54:07.000Z" } ], "analyses": { "subjects": [ "16G20" ], "keywords": [ "basic properties", "prospecies", "generalise part", "functorially finite subcategories", "species gluing algebras" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }