{ "id": "1608.00858", "version": "v1", "published": "2016-08-02T15:05:19.000Z", "updated": "2016-08-02T15:05:19.000Z", "title": "Upper Mikowski dimension estimates for convex restrictions", "authors": [ "Zoltan Buczolich" ], "categories": [ "math.CA" ], "abstract": "We show that there are functions $f$ in the H\\\"older class $C^{ { \\alpha }}[0,1]$, $1< { \\alpha }<2$ such that $f|_{A}$ is not convex, nor concave for any $A { \\subset } [0,1]$ with $ { \\bar { dim }_M } A> { \\alpha }-1$. Our earlier result shows that for the typical/generic $f\\in { C_ { 1 } ^ { { \\alpha } } [0,1] }$, $0\\leq { \\alpha }<2$ there is always a set $A { \\subset } [0,1]$ such that $f|_A$ is convex and $ { \\bar { dim }_M } A=1$. The analogous statement for monotone restrictions is the following: there are functions $f$ in the H\\\"older class $C^{ { \\alpha }}[0,1]$, $1/2 \\leq { \\alpha }<1$ such that $f|_{A}$ is not monotone on $A { \\subset } [0,1]$ with $ { \\bar { dim }_M } A> { \\alpha }$. This statement is not true for the range of parameters $ { \\alpha }<1/2$ and our theorem for the parameter range $1\\leq { \\alpha } <3/2$ cannot be obtained by integration of the result about monotone restrictions.", "revisions": [ { "version": "v1", "updated": "2016-08-02T15:05:19.000Z" } ], "analyses": { "subjects": [ "26A15", "26A12", "26A51", "28A78" ], "keywords": [ "upper mikowski dimension estimates", "convex restrictions", "monotone restrictions", "earlier result", "parameter range" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }