{ "id": "1608.00857", "version": "v1", "published": "2016-08-02T15:02:03.000Z", "updated": "2016-08-02T15:02:03.000Z", "title": "Sobolev extensions of Lipschitz mappings into metric spaces", "authors": [ "Scott Zimmerman" ], "comment": "18 pages", "categories": [ "math.MG" ], "abstract": "Wenger and Young proved that the pair $(\\mathbb{R}^m,\\mathbb{H}^n)$ has the Lipschitz extension property for $m \\leq n$ where $\\mathbb{H}^n$ is the sub-Riemannian Heisenberg group. That is, for some $C>0$, any $L$-Lipschitz map from a subset of $\\mathbb{R}^m$ into $\\mathbb{H}^n$ can be extended to a $CL$-Lipschitz mapping on $\\mathbb{R}^m$. In this paper, we construct Sobolev extensions of such Lipschitz mappings with no restriction on the dimension $m$. We prove that any Lipschitz mapping from a compact subset of $\\mathbb{R}^m$ into $\\mathbb{H}^n$ may be extended to a Sobolev mapping on any bounded domain containing the set. This result is then generalized to include mappings into any Lipschitz $(n-1)$-connected metric space.", "revisions": [ { "version": "v1", "updated": "2016-08-02T15:02:03.000Z" } ], "analyses": { "subjects": [ "49Q15", "53C17", "46E35", "54C20" ], "keywords": [ "lipschitz map", "sub-riemannian heisenberg group", "lipschitz extension property", "construct sobolev extensions", "compact subset" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }