{ "id": "1608.00109", "version": "v1", "published": "2016-07-30T12:10:33.000Z", "updated": "2016-07-30T12:10:33.000Z", "title": "Monochromatic Solutions to Systems of Exponential Equations", "authors": [ "Julian Sahasrabudhe" ], "categories": [ "math.CO" ], "abstract": "Let $n\\in \\mathbb{N}$, $R$ be a binary relation on $[n]$, and $C_1(i,j),\\ldots,C_n(i,j) \\in \\mathbb{Z}$, for $i,j \\in [n]$. We define the exponential system of equations $\\mathcal{E}(R,(C_k(i,j)_{i,j,k})$ to be the system \\[ X_i^{Y_1^{C_1(i,j)} \\cdots Y_n^{C_n(i,j)} } = X_j , \\text{ for } (i,j) \\in R ,\\] in variables $X_1,\\ldots,X_n,Y_1,\\ldots,Y_n$. The aim of this paper is to classify precisely which of these systems admit a monochromatic solution ($X_i,Y_i \\not=1)$ in an arbitrary finite colouring of the natural numbers. This result could be viewed as an analogue of Rado's theorem for exponential patterns.", "revisions": [ { "version": "v1", "updated": "2016-07-30T12:10:33.000Z" } ], "analyses": { "subjects": [ "05D10" ], "keywords": [ "monochromatic solution", "exponential equations", "systems admit", "binary relation", "exponential system" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }