{ "id": "1608.00019", "version": "v1", "published": "2016-07-29T20:18:18.000Z", "updated": "2016-07-29T20:18:18.000Z", "title": "Natural properties of the trunk of a knot", "authors": [ "Derek Davies", "Alexander Zupan" ], "comment": "9 pages, 3 figures", "categories": [ "math.GT" ], "abstract": "The trunk of a knot in $S^3$, defined by Makoto Ozawa, is a measure of geometric complexity similar to the bridge number or width of a knot. We prove that for any two knots $K_1$ and $K_2$, we have $tr(K_1 \\# K_2) = \\max\\{tr(K_1),tr(K_2)\\}$, confirming a conjecture of Ozawa. Another conjecture of Ozawa asserts that any width-minimizing embedding of a knot $K$ also minimizes the trunk of $K$. We produce several families of probable counterexamples to this conjecture.", "revisions": [ { "version": "v1", "updated": "2016-07-29T20:18:18.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "natural properties", "conjecture", "geometric complexity similar", "ozawa asserts", "bridge number" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }