{ "id": "1607.08746", "version": "v1", "published": "2016-07-29T09:43:47.000Z", "updated": "2016-07-29T09:43:47.000Z", "title": "On the Green function and Poisson integrals of the Dunkl Laplacian", "authors": [ "Piotr Graczyk", "Tomasz Luks", "Margit Rösler" ], "comment": "25 pages", "categories": [ "math.AP" ], "abstract": "We prove the existence and study properties of the Green function of the unit ball for the Dunkl Laplacian $\\Delta_k$ in $\\mathbb{R}^d$. As applications we derive the Poisson-Jensen formula for $\\Delta_k$-subharmonic functions and Hardy-Stein identities for the Poisson integrals of $\\Delta_k$. We also obtain sharp estimates of the Newton potential kernel, Green function and Poisson kernel in the rank one case in $\\mathbb{R}^d$. These estimates contrast sharply with the well-known results in the potential theory of the classical Laplacian.", "revisions": [ { "version": "v1", "updated": "2016-07-29T09:43:47.000Z" } ], "analyses": { "subjects": [ "31B05", "31B25", "60J50", "42B30", "51F15" ], "keywords": [ "green function", "poisson integrals", "dunkl laplacian", "newton potential kernel", "poisson-jensen formula" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }