{ "id": "1607.08648", "version": "v1", "published": "2016-07-28T21:48:24.000Z", "updated": "2016-07-28T21:48:24.000Z", "title": "Quartic Equations with Trivial Solutions over Gaussian Integers", "authors": [ "Felix Sidokhine" ], "categories": [ "math.NT" ], "abstract": "In our work we study the equations of the form $aX^4+bX^2 Y^2+cY^4=dZ^2$ over Gaussian integers by a method of the resolvents. We study as a new equations $X^4+6X^2 Y^2+Y^4=Z^2$ (Mordell's equation over $\\mathbb{Z}[i]$), $X^4+6(1+i)X^2Y^2+2iY^4=Z^2$ and $X^4\\pm Y^4=(1+ i)Z^2$ and give the new proofs of the known theorems on $X^4+Y^4=Z^2$ (Fermat - Hilbert), $X^4\\pm Y^4=iZ^2$ (Szab\\'o - Najman).", "revisions": [ { "version": "v1", "updated": "2016-07-28T21:48:24.000Z" } ], "analyses": { "keywords": [ "gaussian integers", "trivial solutions", "quartic equations", "mordells equation", "resolvents" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }