{ "id": "1607.08536", "version": "v1", "published": "2016-07-28T17:01:06.000Z", "updated": "2016-07-28T17:01:06.000Z", "title": "Existence results for fully nonlinear equations in radial domains", "authors": [ "Giulio Galise", "Fabiana Leoni", "Filomena Pacella" ], "comment": "19 pages, 0 figures", "categories": [ "math.AP" ], "abstract": "We consider the fully nonlinear problem \\begin{equation*} \\begin{cases} -F(x,D^2u)=|u|^{p-1}u & \\text{in $\\Omega$}\\\\ u=0 & \\text{on $\\partial\\Omega$} \\end{cases} \\end{equation*} where $F$ is uniformly elliptic, $p>1$ and $\\Omega$ is either an annulus or a ball in $\\Rn$, $n\\geq2$. \\\\ We prove the following results: \\begin{itemize} \\item[i)] existence of a positive/negative radial solution for every exponent $p>1$, if $\\Omega$ is an annulus; \\item[ii)] existence of infinitely many sign changing radial solutions for every $p>1$, characterized by the number of nodal regions, if $\\Omega$ is an annulus; \\item[iii)] existence of infinitely many sign changing radial solutions characterized by the number of nodal regions, if $F$ is one of the Pucci's operator, $\\Omega$ is a ball and $p$ is subcritical.", "revisions": [ { "version": "v1", "updated": "2016-07-28T17:01:06.000Z" } ], "analyses": { "subjects": [ "35J60", "35B50", "34B15" ], "keywords": [ "fully nonlinear equations", "existence results", "radial domains", "sign changing radial solutions", "nodal regions" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }