{ "id": "1607.07978", "version": "v1", "published": "2016-07-27T06:43:06.000Z", "updated": "2016-07-27T06:43:06.000Z", "title": "$ω^ω$-bases in topological and uniform spaces", "authors": [ "Taras Banakh" ], "comment": "40 pages", "categories": [ "math.GN", "math.LO" ], "abstract": "We study topological properties of topological spaces with a local $\\omega^\\omega$-base and uniform spaces with an $\\omega^\\omega$-base. A topological space $X$ is defined to have a local $\\omega^\\omega$-base if each point of $X$ has a neighborhood base $\\{U_\\alpha\\}_{\\alpha\\in\\omega^\\omega}$ such that $U_\\beta\\subset U_\\alpha$ for all $\\alpha\\le\\beta$ in $\\omega^\\omega$. A uniform space $X$ is defined to have an $\\omega^\\omega$-base if it has a base $\\{U_\\alpha\\}_{\\alpha\\in\\omega^\\omega}$ of the uniformity such that $U_\\beta\\subset U_\\alpha$ for all $\\alpha\\le\\beta$ in $\\omega^\\omega$. Our results show that topological spaces with a local $\\omega^\\omega$-base and uniform spaces with an $\\omega^\\omega$-base possess many properties, typical for generalized metric spaces.", "revisions": [ { "version": "v1", "updated": "2016-07-27T06:43:06.000Z" } ], "analyses": { "subjects": [ "54D70", "54E15", "54E18", "54E35", "03E04", "03E17", "54A20", "54A25", "54A35", "54C35", "54D15", "54D45", "54D65", "54D70", "54G10", "54G20" ], "keywords": [ "uniform space", "topological space", "generalized metric spaces", "study topological properties", "base possess" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }