{ "id": "1607.07682", "version": "v1", "published": "2016-07-26T13:18:23.000Z", "updated": "2016-07-26T13:18:23.000Z", "title": "The largest values of Dedekind sums", "authors": [ "Kurt Girstmair" ], "categories": [ "math.NT" ], "abstract": "Let $s(m,n)$ denote the classical \\DED sum, where $n$ is a positive integer and $m\\in\\{0,1,\\ldots, n-1\\}$, $(m,n)=1$. For a given positive integer $k$, we describe a set of at most $k^2$ numbers $m$ for which $s(m,n)$ may be $\\ge s(k,n)$, provided that $n$ is sufficiently large. For the numbers $m$ not in this set, $s(m,n)