{ "id": "1607.07583", "version": "v1", "published": "2016-07-26T08:27:40.000Z", "updated": "2016-07-26T08:27:40.000Z", "title": "Euler's partition theorem for all moduli and new companions to Rogers-Ramanujan-Andrews-Gordon identities", "authors": [ "Xinhua Xiong" ], "comment": "26 pages, submitted to journal", "categories": [ "math.CO" ], "abstract": "In this paper, we give a conjecture, which generalises Euler's partition theorem involving odd parts and different parts for all moduli. We prove this conjecture for two family partitions. We give $q$-difference equations for the related generating function if the moduli is three. We provide new companions to Rogers-Ramanujan-Andrews-Gordon identities under this conjecture.", "revisions": [ { "version": "v1", "updated": "2016-07-26T08:27:40.000Z" } ], "analyses": { "subjects": [ "05A17", "11P84" ], "keywords": [ "rogers-ramanujan-andrews-gordon identities", "companions", "generalises eulers partition theorem", "conjecture", "odd parts" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }