{ "id": "1607.07136", "version": "v1", "published": "2016-07-25T03:22:19.000Z", "updated": "2016-07-25T03:22:19.000Z", "title": "Standing waves for the Chern-Simons-Schrodinger equation with critical exponential growth", "authors": [ "Chao Ji", "Fei Fangb" ], "categories": [ "math.AP" ], "abstract": "In this paper, by combing the variational methods and Trudinger-Moser inequality, we study the existence and multiplicity of the positive standing wave for the following Chern-Simons-Schr\\\"odinger equation \\begin{equation} -\\Delta u+u +\\lambda\\left(\\int_{0}^{\\infty}\\frac{h(s)}{s}u^{2}(s)ds+\\frac{h^{2}(\\vert x\\vert)}{\\vert x\\vert^{2}}\\right)u=f(x,u)+\\epsilon k(x)\\quad\\quad \\text{in}\\,\\,\\mathbb{R}^2, \\\\ \\end{equation} where $h(s)=\\int_{0}^{s}\\frac{l}{2}u^{2}(l)dl$, $\\lambda>0$ and the nonlinearity $f:\\mathbb{R}^2\\times \\mathbb{R}\\rightarrow \\mathbb{R}$ behaves like $\\text{exp}(\\alpha\\vert u\\vert^{2})$ as $\\vert u\\vert\\rightarrow \\infty$. For the case $\\epsilon=0$, we can get a mountain-pass type solution.", "revisions": [ { "version": "v1", "updated": "2016-07-25T03:22:19.000Z" } ], "analyses": { "keywords": [ "critical exponential growth", "chern-simons-schrodinger equation", "mountain-pass type solution", "trudinger-moser inequality", "variational methods" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }