{ "id": "1607.06873", "version": "v1", "published": "2016-07-23T01:19:38.000Z", "updated": "2016-07-23T01:19:38.000Z", "title": "A necessary and sufficient condition for edge universality at the largest singular values of covariance matrices", "authors": [ "Xiucai Ding", "Fan Yang" ], "categories": [ "math.PR" ], "abstract": "In this paper, we prove a necessary and sufficient condition for the edge universality of covariance matrices, which is conjectured by Pillai and Yin. Consider the sample covariance matrices of the form $XX^{*}$, where $X$ is an $M \\times N$ rectangular matrix with i.i.d entries $X_{ij}=x_{ij}$ satisfying $\\mathbb{E} x_{ij}=0$ and $ \\mathbb{E} |x_{ij}|^2 ={N}^{-1}$. Under the assumption $\\lim_{N \\to \\infty} {N}/{M}=d \\in (0, \\infty)$, we prove that the Tracy-Widom law holds at the soft edge (i.e., for the largest eigenvalues) if and only if $\\lim_{s \\rightarrow \\infty}s^4 \\mathbb{P}(\\vert \\sqrt{N} x_{ij} \\vert \\geq s)=0$. This condition was first proposed for Wigner matrices by Lee and Yin.", "revisions": [ { "version": "v1", "updated": "2016-07-23T01:19:38.000Z" } ], "analyses": { "keywords": [ "largest singular values", "edge universality", "sufficient condition", "sample covariance matrices", "tracy-widom law holds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }