{ "id": "1607.06696", "version": "v1", "published": "2016-07-22T14:52:26.000Z", "updated": "2016-07-22T14:52:26.000Z", "title": "A Central Limit Theorem for Lipschitz-Killing Curvatures of Gaussian Excursions", "authors": [ "Dennis Müller" ], "categories": [ "math.PR" ], "abstract": "This paper studies the excursion set of a real stationary isotropic Gaussian random field above a fixed level. We show that the standardized Lipschitz-Killing curvatures of the intersection of the excursion set with a window converges in distribution to a normal distribution as the window grows to the $d$-dimensional Euclidean space. Moreover a lower bound for the asymptotic variance is shown.", "revisions": [ { "version": "v1", "updated": "2016-07-22T14:52:26.000Z" } ], "analyses": { "subjects": [ "60F05", "60D05", "60G60", "60G15" ], "keywords": [ "central limit theorem", "lipschitz-killing curvatures", "gaussian excursions", "real stationary isotropic gaussian random", "stationary isotropic gaussian random field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }