{ "id": "1607.06573", "version": "v1", "published": "2016-07-22T06:49:12.000Z", "updated": "2016-07-22T06:49:12.000Z", "title": "Almost universal ternary sums of polygonal numbers", "authors": [ "Anna Haensch", "Ben Kane" ], "categories": [ "math.NT" ], "abstract": "For a natural number $m$, generalized $m$-gonal numbers are those numbers of the form $p_m(x)=\\frac{(m-2)x^2-(m-4)x}{2}$ with $x\\in \\mathbb Z$. In this paper we establish conditions on $m$ for which the ternary sum $p_m(x)+p_m(y)+p_m(z)$ is almost universal.", "revisions": [ { "version": "v1", "updated": "2016-07-22T06:49:12.000Z" } ], "analyses": { "subjects": [ "11E20", "11E25", "11E45", "11E81", "11H55", "05A30" ], "keywords": [ "universal ternary sums", "polygonal numbers", "natural number", "establish conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }