{ "id": "1607.06432", "version": "v1", "published": "2016-07-21T19:07:27.000Z", "updated": "2016-07-21T19:07:27.000Z", "title": "$A_1$ theory of weights for rough homogeneous singular integrals and commutators", "authors": [ "C. Perez", "I. Rivera-Rios", "L. Roncal" ], "comment": "19 pages", "categories": [ "math.CA" ], "abstract": "Quantitative $A_1-A_\\infty$ estimates for rough homogeneous singular integrals $T_{\\Omega}$ and commutators of $BMO$ symbols and $T_{\\Omega}$ are obtained. In particular the following estimates are proved: % \\[ \\|T_\\Omega \\|_{L^p(w)}\\le c_{n,p}\\|\\Omega\\|_{L^\\infty} [w]_{A_1}^{\\frac{1}{p}}\\,[w]_{A_{\\infty}}^{1+\\frac{1}{p'}}\\|f\\|_{L^p(w)} \\] % and % \\[ \\| [b,T_{\\Omega}]f\\|_{L^{p}(w)}\\leq c_{n,p}\\|b\\|_{BMO}\\|\\Omega\\|_{L^{\\infty}} [w]_{A_1}^{\\frac{1}{p}}[w]_{A_{\\infty}}^{2+\\frac{1}{p'}}\\|f\\|_{L^{p}\\left(w\\right)}, \\] % for $1