{ "id": "1607.06366", "version": "v1", "published": "2016-07-21T15:37:27.000Z", "updated": "2016-07-21T15:37:27.000Z", "title": "On the equation $ n_1 ... n_{k+1} =n_{k+2}... n_{2(k+1)} $", "authors": [ "Sanying Shi", "Michel Weber" ], "comment": "15 pages", "categories": [ "math.NT" ], "abstract": "Let $k\\ge 1$ and let $N_{k}(B)$ denote the number of solutions of the equation $n_1\\ldots n_{k+1} =n_{k+2}\\ldots n_{2(k+1)}$ with unknowns verifying $1\\le n_i\\le B$,$1\\le i\\le 2(k+1)$. When $k=1$, very precise estimates are known. When $k=2$, we show that $B^3(\\log^3 B)(\\log\\log B)^{-1}\\ll N_2(B )\\ll B^3 \\log^4 B$. For $k>2$ we also show that $B^{k+1}(\\log B)^{[\\log_2k]}\\ll_k N_{k}(B) \\ll_k B^{k+1}\\big(\\log B\\big)^{k^2+2k-2}$. We further study the number of solutions $N(B,F)$ of the equation $n_1n_2=n_3n_4$, where $1\\le n_1\\le B$, $1\\le n_3\\le B$, $n_2, n_4\\in F$ and $F\\subset [1,B]$ is a factor closed set. Let $F= \\big\\{m=p_1^{\\epsilon_1}\\ldots p_k^{\\epsilon_k}, \\ \\epsilon_j\\in \\{0,1\\}, 1\\le j\\le k\\big\\}$, where $p_1<\\ldots