{ "id": "1607.05743", "version": "v1", "published": "2016-07-19T20:10:12.000Z", "updated": "2016-07-19T20:10:12.000Z", "title": "Characterization of projective spaces by Seshadri constants", "authors": [ "Yuchen Liu", "Ziquan Zhuang" ], "categories": [ "math.AG" ], "abstract": "We prove that an $n$-dimensional complex projective variety is isomorphic to $\\mathbb{P}^n$ if the Seshadri constant of the anti-canonical divisor at some smooth point is greater than $n$. We also classify complex projective varieties with Seshadri constants equal to $n$.", "revisions": [ { "version": "v1", "updated": "2016-07-19T20:10:12.000Z" } ], "analyses": { "keywords": [ "projective spaces", "characterization", "dimensional complex projective variety", "seshadri constants equal", "smooth point" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }