{ "id": "1607.05555", "version": "v1", "published": "2016-07-19T12:45:38.000Z", "updated": "2016-07-19T12:45:38.000Z", "title": "Variational calculus on Wiener space with relation to conditional expectations", "authors": [ "Kévin Hartmann" ], "categories": [ "math.PR" ], "abstract": "We give a variational formulation for $-\\log\\mathbb{E}_\\nu\\left[e^{-f}|\\mathcal{F}_t\\right]$ for a large class of measures $\\nu$. We give a refined entropic characterization of the invertibility of some perturbations of the identity. We also discuss the attainability of the infimum in the variational formulation and obtain a Pr\\'ekopa-Leindler theorem for conditional expectations.", "revisions": [ { "version": "v1", "updated": "2016-07-19T12:45:38.000Z" } ], "analyses": { "keywords": [ "conditional expectations", "variational calculus", "wiener space", "variational formulation", "large class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }