{ "id": "1607.05168", "version": "v1", "published": "2016-07-18T16:32:31.000Z", "updated": "2016-07-18T16:32:31.000Z", "title": "Evaluation of Spectral Zeta-Functions with the Renormalization Group", "authors": [ "Stefan Boettcher", "Shanshan Li" ], "comment": "22 pages, 5 figures", "categories": [ "math-ph", "math.MP" ], "abstract": "We evaluate spectral zeta-functions of certain network Laplacians that can be treated exactly with the renormalization group. As specific examples we consider a class of Hanoi networks and those hierarchical networks obtained by the Migdal-Kadanoff bond moving scheme from regular lattices. These results are applied to synchronization and to quantum search algorithms.", "revisions": [ { "version": "v1", "updated": "2016-07-18T16:32:31.000Z" } ], "analyses": { "keywords": [ "renormalization group", "evaluation", "quantum search algorithms", "migdal-kadanoff bond moving scheme", "evaluate spectral zeta-functions" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }