{ "id": "1607.03832", "version": "v1", "published": "2016-07-13T17:30:02.000Z", "updated": "2016-07-13T17:30:02.000Z", "title": "Uniqueness of the group Fourier transform on certain nilpotent Lie groups", "authors": [ "Arup Chattopadhyay", "Deb Kumar Giri", "R. K. Srivastava" ], "comment": "19 pages", "categories": [ "math.FA" ], "abstract": "In this article, we prove that if the group Fourier transform of certain integrable functions on the Heisenberg motion group (or step two nilpotent Lie groups) is of finite rank, then the function is identically zero. These results can be thought as analogous to the Benedicks theorem that dealt with the uniqueness of the Fourier transform of integrable functions on the Euclidean spaces.", "revisions": [ { "version": "v1", "updated": "2016-07-13T17:30:02.000Z" } ], "analyses": { "keywords": [ "group fourier transform", "nilpotent lie groups", "uniqueness", "heisenberg motion group", "integrable functions" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }