{ "id": "1607.03650", "version": "v1", "published": "2016-07-13T09:14:20.000Z", "updated": "2016-07-13T09:14:20.000Z", "title": "The Goldman and Fock-Goncharov coordinates for convex projective structures on surfaces", "authors": [ "Francis Bonahon", "Inkang Kim" ], "comment": "12 pages", "categories": [ "math.GT" ], "abstract": "Let P(S) be the space of convex projective structures on a surface S with negative Euler characteristic. Goldman and Bonahon-Dreyer constructed two different sets of global coordinates for P(S), both associated to a pair of pants decomposition of the surface S. The article explicitly describes the coordinate change between these two parametrizations. Most of the arguments are concentrated in the case where S is a pair of pants, in which case the Bonahon-Dreyer coordinates are actually due to Fock-Goncharov.", "revisions": [ { "version": "v1", "updated": "2016-07-13T09:14:20.000Z" } ], "analyses": { "subjects": [ "51M10", "57S25" ], "keywords": [ "convex projective structures", "fock-goncharov coordinates", "coordinate change", "negative euler characteristic", "pants decomposition" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }