{ "id": "1607.03600", "version": "v1", "published": "2016-07-13T06:24:07.000Z", "updated": "2016-07-13T06:24:07.000Z", "title": "The Elekes-Szabó Theorem in four dimensions", "authors": [ "Orit E. Raz", "Micha Sharir", "Frank de Zeeuw" ], "comment": "15 pages. arXiv admin note: text overlap with arXiv:1504.05012", "categories": [ "math.CO", "cs.DM" ], "abstract": "Let $F\\in\\mathbb{C}[x,y,s,t]$ be an irreducible constant-degree polynomial, and let $A,B,C,D\\subset\\mathbb{C}$ be finite sets of size $n$. We show that $F$ vanishes on at most $O(n^{8/3})$ points of the Cartesian product $A\\times B\\times C\\times D$, unless $F$ has a special group-related form. A similar statement holds for $A,B,C,D$ of unequal sizes. This is a four-dimensional extension of our recent improved analysis of the original Elekes-Szab\\'o theorem in three dimensions.", "revisions": [ { "version": "v1", "updated": "2016-07-13T06:24:07.000Z" } ], "analyses": { "keywords": [ "dimensions", "original elekes-szabo theorem", "similar statement holds", "four-dimensional extension", "unequal sizes" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }