{ "id": "1607.03511", "version": "v1", "published": "2016-07-12T20:30:45.000Z", "updated": "2016-07-12T20:30:45.000Z", "title": "Construction of cusp forms using Rankin-Cohen brackets", "authors": [ "Abhash Kumar Jha", "Arvind Kumar" ], "categories": [ "math.NT" ], "abstract": "For a fix modular form g and a non negative ineteger {\\nu}, by using Rankin-Cohen bracket we first define a linear map $T_{g,{\\nu}}$ on the space of modular forms. We explicitly compute the adjoint of this map and show that the n-th Fourier coefficients of the image of the cusp form f under this map is, upto a constant a special value of Rankin-Selberg convolution of f and g.", "revisions": [ { "version": "v1", "updated": "2016-07-12T20:30:45.000Z" } ], "analyses": { "keywords": [ "cusp form", "rankin-cohen bracket", "construction", "fix modular form", "n-th fourier coefficients" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }