{ "id": "1607.02803", "version": "v1", "published": "2016-07-11T01:42:10.000Z", "updated": "2016-07-11T01:42:10.000Z", "title": "Parallelotope tilings and $q$-decomposition numbers", "authors": [ "Joseph Chuang", "Hyohe Miyachi", "Kai Meng Tan" ], "comment": "72 pages, 11 figures", "categories": [ "math.RT", "math.QA" ], "abstract": "We provide closed formulas for a large subset of the canonical basis vectors of the Fock space representation of $U_q(\\widehat{\\mathfrak{sl}}_e)$. These formulas arise from parallelotopes which assemble to form polytopal complexes. The subgraphs of the $\\mathrm{Ext}^1$-quivers of $v$-Schur algebras at complex $e$-th roots of unity generated by simple modules corresponding to these canonical basis vectors are given by the $1$-skeletons of the polytopal complexes.", "revisions": [ { "version": "v1", "updated": "2016-07-11T01:42:10.000Z" } ], "analyses": { "subjects": [ "17B37", "20G43" ], "keywords": [ "decomposition numbers", "parallelotope tilings", "canonical basis vectors", "fock space representation", "form polytopal complexes" ], "note": { "typesetting": "TeX", "pages": 72, "language": "en", "license": "arXiv", "status": "editable" } } }