{ "id": "1607.02702", "version": "v1", "published": "2016-07-10T07:11:30.000Z", "updated": "2016-07-10T07:11:30.000Z", "title": "Higher associativity of Moore spectra", "authors": [ "Prasit Bhattacharya" ], "categories": [ "math.AT" ], "abstract": "The Moore spectrum $M_p(i)$ is the cofiber of the $p^{i}$ map on the sphere spectrum. For a fixed $p$ and $n$, we find a lower bound on $i$ for which a unital $A_n$-structure on $M_p(i)$ is guaranteed. This bound is dependent on the stable homotopy groups of spheres.", "revisions": [ { "version": "v1", "updated": "2016-07-10T07:11:30.000Z" } ], "analyses": { "keywords": [ "moore spectrum", "higher associativity", "lower bound", "stable homotopy groups", "sphere spectrum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }