{ "id": "1607.02564", "version": "v1", "published": "2016-07-09T03:51:51.000Z", "updated": "2016-07-09T03:51:51.000Z", "title": "A base-$b$ extension of the binomial coefficient", "authors": [ "Tanay Wakhare", "Christophe Vignat" ], "comment": "9 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "We study the properties of the base-$b$ binomial coefficient defined by Jiu and Vignat, introduced in the context of a digital binomial theorem. After introducing a general summation formula we derive base-$b$ analogues of the Stirling numbers of the second kind, the Fibonacci numbers, and the classical exponential function.", "revisions": [ { "version": "v1", "updated": "2016-07-09T03:51:51.000Z" } ], "analyses": { "keywords": [ "binomial coefficient", "general summation formula", "digital binomial theorem", "second kind", "fibonacci numbers" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }