{ "id": "1607.02252", "version": "v1", "published": "2016-07-08T06:48:18.000Z", "updated": "2016-07-08T06:48:18.000Z", "title": "Exponential ergodicity for a class of non-Markovian stochastic processes", "authors": [ "Laure Pédèches" ], "categories": [ "math.PR" ], "abstract": "We prove the convergence at an exponential rate towards the invariant probability measure for a class of solutions of stochastic differential equations with finite delay. This is done, in this non-Markovian setting, using the cluster expansion method, inspired from [4] or [14]. As a consequence, the results hold for small perturbations of ergodic diffusions.", "revisions": [ { "version": "v1", "updated": "2016-07-08T06:48:18.000Z" } ], "analyses": { "keywords": [ "non-markovian stochastic processes", "exponential ergodicity", "stochastic differential equations", "invariant probability measure", "cluster expansion method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }